skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Studholme, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ocean’s role in Atlantic Multidecadal Variability (AMV) remains intensely debated. The core issue is whether AMV, as an internal climate mode, is driven by variations in Atlantic Meridional Overturning Circulation (AMOC) or by atmospheric processes. Climate models exhibit wide diversity in AMOC-AMV linkages, producing temporal correlations between 0.3-0.8, but no robust explanation for these differences exists. Here, using multi-model intercomparison and perturbation experiments, we propose a dynamical mechanism relating the strength of AMOC-AMV linkage in climate models to stratospheric temperature. This mechanism includes (1) tropospheric midlatitude jet response to stratospheric mean-state temperature anomalies in mid-latitudes and (2) resulting ocean surface density changes that alter the spatial structure of deep-water formation in the subpolar North Atlantic and hence AMOC-AMV connection. Specifically, colder stratospheric temperatures produce tighter linkage through the northward jet shifts and a stronger AMOC, with enhanced deep-water formation in the Labrador and Irminger Seas relative to the Nordic Seas. Models with a warm stratospheric bias tend to produce weaker linkage. Perturbation experiments imposing stratospheric cooling at mid to high latitudes within two independent climate models support these conclusions. Furthermore, we find that models with stronger AMOC-AMV linkage predict a stronger North Atlantic “warming hole” and weaker 21st-century Arctic amplification. We conclude that these results have significant implications for climate prediction and projections. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026